Hi starting a new thread for discussing various important concepts related to the exam,
C1. Betai= Cov(Ri,Rm)/stdDev(m)^2= correlation*stdDev(i)*stdDev(m)/stdDev(m)^2 =correlation*stdDev(i)/stdDev(m)
stdDev of portfolio= Beta(p)*stdDev(m) ; m stands for market
how to get the above formula see the below derivation-----
We know that CML are most efficient portfolios with maximum sharpe ratio and thus for CAL portfolio to be most efficient,
Sharpe ratio of CAL= Sharpe ratio of CML
E(Rp)-Rf/stdDev(p)= E(Rm)-Rf/stdDev(m)
E(Rp)-Rf=stdDev(p)*[E(Rm)-Rf/stdDev(m)]
E(Rp)=Rf+[stdDev(p)/stdDev(m)]*[E(Rm)-Rf]
compare it with CAPM E(Rp)=Rf+Beta(p)*[E(Rm)-Rf]
we get Beta(p)=[stdDev(p)/stdDev(m)] =>stdDev(p)=Beta(p)*stdDev(m)
C2. stdDev(p) of two Assets A and B
stdDev(p)= sqrt[wA^2*stdDev(A)^2+wB^2*stdDev(B)^2+2*Corr(A,B)*wA*wB*stdDev(A)*stdDev(B)]
for minimum variance portfolio,
wA=[stdDev(B)^2-corr(A,B)*stdDev(A)*stdDev(B)]/[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B)]
for above formula see the listed below derivation;
wA+wB=1 =>wB=1-wA
stdDev(p)^2=wA^2*stdDev(A)^2+wB^2*stdDev(B)^2+2*Corr(A,B)*wA*wB*stdDev(A)*stdDev(B)
substitute wB for 1-wA =>
stdDev(p)^2= wA^2*stdDev(A)^2+(1-wA)^2*stdDev(B)^2+2*Corr(A,B)*wA*(1-wA)*stdDev(A)*stdDev(B)
for portfolio variance stdDev(p)^2 to be minimum,
first derivative of portfolio variance should be 0,
d(stdDev(p)^2)/dwA=0
=>d/dwA(wA^2*stdDev(A)^2+(1-wA)^2*stdDev(B)^2+2*Corr(A,B)*wA*(1-wA)*stdDev(A)*stdDev(B))=0
=>2*wA*stdDev(A)^2-2(1-wA)*stdDev(B)^2+2*Corr(A,B)*(1-2*wA)*stdDev(A)*stdDev(B))=0
=>wA*stdDev(A)^2+(wA)*stdDev(B)^2-stdDev(B)^2+Corr(A,B)*(1-2*wA)*stdDev(A)*stdDev(B))=0 cancelling out 2 from both sides
=>wA*[stdDev(A)^2+stdDev(B)^2]-stdDev(B)^2+Corr(A,B)*(1-2*wA)*stdDev(A)*stdDev(B))=0
=>wA*[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))]-stdDev(B)^2+Corr(A,B)*stdDev(A)*stdDev(B))=0
taking wA common
wA*[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))]=stdDev(B)^2-Corr(A,B)*stdDev(A)*stdDev(B))
wA=[stdDev(B)^2-Corr(A,B)*stdDev(A)*stdDev(B))]/[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))]
to be certain that the portfolio variance is minimal,
second derivative of variance should be greater than zero,
d^2(stdDev(p)^2)/dwA^2=d/dwA[2*wA*stdDev(A)^2-2(1-wA)*stdDev(B)^2+2*Corr(A,B)*(1-2*wA)*stdDev(A)*stdDev(B))]
=2*stdDev(A)^2+2*stdDev(B)^2+2*Corr(A,B)*(-2)*stdDev(A)*stdDev(B))
=2[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))
=2[stdDev(A)^2+stdDev(B)^2-2*stdDev(A)*stdDev(B)+2*stdDev(A)*stdDev(B)-2*Corr(A,B)*stdDev(A)*stdDev(B))]
=2[(stdDev(A)-stdDev(B))^2+2*stdDev(A)*stdDev(B)(1-Corr(A,B))]>=0
as Corr(A,B)<=1
thus proved that variance is minimum for this value of
wA=[stdDev(B)^2-Corr(A,B)*stdDev(A)*stdDev(B))]/[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))]
C1. Betai= Cov(Ri,Rm)/stdDev(m)^2= correlation*stdDev(i)*stdDev(m)/stdDev(m)^2 =correlation*stdDev(i)/stdDev(m)
stdDev of portfolio= Beta(p)*stdDev(m) ; m stands for market
how to get the above formula see the below derivation-----
We know that CML are most efficient portfolios with maximum sharpe ratio and thus for CAL portfolio to be most efficient,
Sharpe ratio of CAL= Sharpe ratio of CML
E(Rp)-Rf/stdDev(p)= E(Rm)-Rf/stdDev(m)
E(Rp)-Rf=stdDev(p)*[E(Rm)-Rf/stdDev(m)]
E(Rp)=Rf+[stdDev(p)/stdDev(m)]*[E(Rm)-Rf]
compare it with CAPM E(Rp)=Rf+Beta(p)*[E(Rm)-Rf]
we get Beta(p)=[stdDev(p)/stdDev(m)] =>stdDev(p)=Beta(p)*stdDev(m)
C2. stdDev(p) of two Assets A and B
stdDev(p)= sqrt[wA^2*stdDev(A)^2+wB^2*stdDev(B)^2+2*Corr(A,B)*wA*wB*stdDev(A)*stdDev(B)]
for minimum variance portfolio,
wA=[stdDev(B)^2-corr(A,B)*stdDev(A)*stdDev(B)]/[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B)]
for above formula see the listed below derivation;
wA+wB=1 =>wB=1-wA
stdDev(p)^2=wA^2*stdDev(A)^2+wB^2*stdDev(B)^2+2*Corr(A,B)*wA*wB*stdDev(A)*stdDev(B)
substitute wB for 1-wA =>
stdDev(p)^2= wA^2*stdDev(A)^2+(1-wA)^2*stdDev(B)^2+2*Corr(A,B)*wA*(1-wA)*stdDev(A)*stdDev(B)
for portfolio variance stdDev(p)^2 to be minimum,
first derivative of portfolio variance should be 0,
d(stdDev(p)^2)/dwA=0
=>d/dwA(wA^2*stdDev(A)^2+(1-wA)^2*stdDev(B)^2+2*Corr(A,B)*wA*(1-wA)*stdDev(A)*stdDev(B))=0
=>2*wA*stdDev(A)^2-2(1-wA)*stdDev(B)^2+2*Corr(A,B)*(1-2*wA)*stdDev(A)*stdDev(B))=0
=>wA*stdDev(A)^2+(wA)*stdDev(B)^2-stdDev(B)^2+Corr(A,B)*(1-2*wA)*stdDev(A)*stdDev(B))=0 cancelling out 2 from both sides
=>wA*[stdDev(A)^2+stdDev(B)^2]-stdDev(B)^2+Corr(A,B)*(1-2*wA)*stdDev(A)*stdDev(B))=0
=>wA*[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))]-stdDev(B)^2+Corr(A,B)*stdDev(A)*stdDev(B))=0
taking wA common
wA*[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))]=stdDev(B)^2-Corr(A,B)*stdDev(A)*stdDev(B))
wA=[stdDev(B)^2-Corr(A,B)*stdDev(A)*stdDev(B))]/[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))]
to be certain that the portfolio variance is minimal,
second derivative of variance should be greater than zero,
d^2(stdDev(p)^2)/dwA^2=d/dwA[2*wA*stdDev(A)^2-2(1-wA)*stdDev(B)^2+2*Corr(A,B)*(1-2*wA)*stdDev(A)*stdDev(B))]
=2*stdDev(A)^2+2*stdDev(B)^2+2*Corr(A,B)*(-2)*stdDev(A)*stdDev(B))
=2[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))
=2[stdDev(A)^2+stdDev(B)^2-2*stdDev(A)*stdDev(B)+2*stdDev(A)*stdDev(B)-2*Corr(A,B)*stdDev(A)*stdDev(B))]
=2[(stdDev(A)-stdDev(B))^2+2*stdDev(A)*stdDev(B)(1-Corr(A,B))]>=0
as Corr(A,B)<=1
thus proved that variance is minimum for this value of
wA=[stdDev(B)^2-Corr(A,B)*stdDev(A)*stdDev(B))]/[stdDev(A)^2+stdDev(B)^2-2*Corr(A,B)*stdDev(A)*stdDev(B))]