Hello,
In the notes it says that ES is the probablity weighted average of the tail losses, yet the way we always calulate it assuming that all of the "slices" have equal weight. Is ES defined as equally weighting the slices or is this just a simplification that Dowd makes? Is there an assumption that the test makes?
Same thing for Spectral risk measures. The example in the book gives higher weights to the "slices" that are more risky (contain bigger losses, which is expected) but nothing seems to be done with the probability of these slices, so I guess I need to ask the same question as above: does the test just assume that all of the slices will be equally weighted (from a probability standpoint)?
Thanks!
Shannon
In the notes it says that ES is the probablity weighted average of the tail losses, yet the way we always calulate it assuming that all of the "slices" have equal weight. Is ES defined as equally weighting the slices or is this just a simplification that Dowd makes? Is there an assumption that the test makes?
Same thing for Spectral risk measures. The example in the book gives higher weights to the "slices" that are more risky (contain bigger losses, which is expected) but nothing seems to be done with the probability of these slices, so I guess I need to ask the same question as above: does the test just assume that all of the slices will be equally weighted (from a probability standpoint)?
Thanks!
Shannon